Skip to main content

Advertisement

Log in

Hyperelastic materials behavior modeling using consistent strain energy density functions

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Hyperelastic materials have high deformability and nonlinearity in load–deformation behavior. Based on a phenomenological approach, these materials are treated as a continuum, and a strain energy density is considered to describe their hyperelastic behavior. In this paper, the mechanical behavior characterization of these materials is studied from the continuum viewpoint. For this purpose, the strain energy density is expressed as sum of independent functions of the mutual multiple of principal stretches. These functions are determined by applying the governing postulates on the form of the strain energy density. It is observed that a consistent strain energy density is expressible in terms of the mathematical functions of polynomial, power law, logarithmic and particularly exponential. The proposed strain energy density functions cover modeling both of compressible and incompressible materials. Moreover, the material parameters of these models are calculated based on the correlation between the values of the strain energy density (rather than the stresses) cast from the test data and the theory. In order to investigate the appropriateness of the proposed models, several experimental data for incompressible and compressible isotropic materials under homogeneous deformations are examined in which the predictions of the proposed models show a good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivlin R.S., Saunders D.W.: Large elastic deformations of isotropic materials VII, experiments on the deformation of rubber. Phil. Trans. R. Soc. A 243, 251–288 (1951)

    Article  Google Scholar 

  2. Valanis K.C., Landel R.F.: The strain-energy function of hyper-elastic material in terms of extension ratios. J. Appl. Phys. 38, 2997–3002 (1967)

    Article  Google Scholar 

  3. Ogden R.W.: Biaxial deformation of rubber-like solids: comparison of theory and experiment. J. Phys. D: Appl. Phys. 12, 1463–1472 (1979)

    Article  Google Scholar 

  4. Kakavas P.A.: A new development of the strain energy function for hyperelastic materials using a logarithmic strain approach. J. Appl. Poly. Sci. 77, 660–672 (2000)

    Article  Google Scholar 

  5. Attard M.M.: Finite strain isotropic hyperelasticity. Int. J. Solids Struct. 40, 4353–4378 (2003)

    Article  MATH  Google Scholar 

  6. Beatty M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers and biological tissues with examples. Appl. Mech. Rev. 40, 1699–1734 (1987)

    Article  Google Scholar 

  7. Ehlers W., Eipper G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130, 17–27 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Yeoh O.H.: Characterization of elastic properties of carbon black filled rubber vulcanizates. Rubber Chem. Technol. 63, 792–805 (1990)

    Google Scholar 

  9. Yeoh O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993)

    Google Scholar 

  10. Lambert-Diani J., Rey C.: New phenomenological behavior laws for rubbers and thermoplastic elastomers. Eur. J. Mech. A/Solids 18, 1027–1043 (1999)

    Article  MATH  Google Scholar 

  11. El-Lawindy A.M.Y., El-Guiziri S.B.: Strain energy density of carbon-black-loaded rubber vulcanizates. J. Phys. D: Appl. Phys. 33, 1894–1901 (2000)

    Article  Google Scholar 

  12. Boyce M.C., Arruda E.M.: Constitutive models of rubber elasticity. Rubber Chem. Technol. 73, 504–523 (2000)

    Google Scholar 

  13. Bradley G.L., Chang P.C., Mckenna G.B.: Rubber modeling using uniaxial test data. J. Appl. Poly. Sci. 81, 837–848 (2001)

    Article  Google Scholar 

  14. Bischoff J.E., Arruda E.M., Grosh K.: A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chem. Technol. 74, 541–559 (2000)

    Google Scholar 

  15. Ogden R.W.: Non-Linear Elastic Deformations. Dover Publications, Mineola (1997)

    Google Scholar 

  16. Treloar L.R.G.: The Physics of Rubber Elasticity. Clarendon Press, Oxford (1975)

    Google Scholar 

  17. Drozdov A.D.: Constitutive equations in finite elasticity of rubbers. Int. J. Solids Struct. 44, 272–297 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ogden R.W., Saccomandi G., Sgura I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34, 484–502 (2004)

    Article  MATH  Google Scholar 

  19. Hartmann S.: Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests. Acta Mech. 148, 129–155 (2001)

    Article  MATH  Google Scholar 

  20. Gendy A.S., Saleeb A.F.: Nonlinear material parameter estimation of characterizing hyperelastic large strain models. Comput. Mech. 25, 66–77 (2000)

    Article  MATH  Google Scholar 

  21. Treloar L.R.G.: Stress–strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944)

    Article  Google Scholar 

  22. Kawabata S., Matsuda M., Tel K., Kawai H.: Experimental survey of the strain energy density function of isoprene rubber vulcanizate. Macromolecules 14, 154–162 (1981)

    Article  Google Scholar 

  23. Heuillet, P., Dugautier, L.: Modelisation du comportement hyperelastique des caoutchoucs et elastomeres thermoplastiques, compacts on cellulaires. Genie Mecanique des Caoutchoucs et des Elastomeres Thermoplastiques (1997)

  24. Alexander H.: A constitutive relation for rubber-like materials. Int. J. Eng. Sci. 9, 549–563 (1968)

    Article  Google Scholar 

  25. Bridgman P.W.: The pressure–volume–temperature relations of fifteen liquids. Proc. Am. Acad. Arts Sci. 68, 1–25 (1933)

    Google Scholar 

  26. Bridgman P.W.: Electrical resistances and volume changes up to 20,000 kg/cm2. Proc. Natl. Acad. Sci. 21, 109 (1935)

    Article  Google Scholar 

  27. Adams L.H., Gibson R.E.: The compressibility of rubber. J. Acad. Sci. 20, 213–223 (1930)

    Google Scholar 

  28. Bridgman P.W.: The compression of 61 substances to 25,000 kg/cm2 determined by a new rapid method. Proc. Am. Acad. Arts Sci. 76, 9–24 (1945)

    Google Scholar 

  29. Penn R.W.: Volume changes accompanying the extension of rubber. Trans. Soc. Rheo. 14, 509–517 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Naghdabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darijani, H., Naghdabadi, R. Hyperelastic materials behavior modeling using consistent strain energy density functions. Acta Mech 213, 235–254 (2010). https://doi.org/10.1007/s00707-009-0239-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0239-3

Keywords

Navigation